Probability Theory and Exact Inference in Bayesian Networks

 $a^{0.5}1^{[a0]}$

By: Aryeh Freud

Arcsin(2)

 $+n^2$

Finite Probability

If *S* is a finite nonempty sample space of equally likely outcomes, and *E* is an event, that is, a subset of S, then the probability of *E* is $p(E) = \frac{|E|}{|E|}$ $\mathcal{S}_{0}^{(n)}$

According to Pierre-Simon Laplace's definition, the probability of an event happening is between 0 and 1.

Pierre-Simon Laplace

Assigning Probabilities

- Suppose that *S* is a set with *n* elements. The *uniform distribution* assigns the probability 1∕*n* to each element of *S*.
- The probability of an event as the sum of the probabilities of the event is

 $p(E) = \sum$ $\overline{s\varepsilon E}$ $p(s)$

• Because $|E| = m$ and $|S| = n$, it follows that $p(E) = \frac{m}{n}$ \overline{n} $=\frac{|E|}{\log 2}$ $\frac{E_1}{S}$ which is Laplace's definition of the probability of event E.

Probabilities of **Complements** and Unions of Events

- Let *E* be an event in a sample space *S*. The probability of the event is $\overline{E} = S - E$.
- The complementary event of *E*, is given by $p(\overline{E}) = 1$ $p(E)$, where \overline{E} is the complementary event of the event E. This holds true when looking at the equation $\sum_{s \in S} p(s) = 1 = p(E) + p(\overline{E})$ because the sum of probabilities of the n possible outcomes is 1 and each outcome is either in E or in \overline{E} but not in both.
- The generalization of this is in the following formula for the probability of the union of pairwise disjoint events: $p(\bigcup_i E_i) = \sum_i p(E_i).$

Conditional Probability

[kan-'dish-nal ,prä-ba-'bi-la-tē]

The likelihood of an event or outcome occurring, based on the occurrence of a previous event or outcome.

• Let E and F be events with $p(F)$ > 0. The conditional probability of E given F, denoted by $p(E \mid F)$ is defined as: $p(E | F) = \frac{p(E \cap F)}{p(F)}$

Independence

• Let E and F be events. E and F are independent if and only if $p(E \cap F) = p(E)p(F).$

• We know that $p(E \mid F) = \frac{p(E \cap F)}{p(F)}$, so asking if $p(E \mid F) =$ $p(E)$ is the same as $p(E \cap F) = p(E)p(F)$, which is what led us to our definition of independence.

Bernoulli Trials

• The probability of exactly *k* successes in *n* independent Bernoulli trials, with probability of success *p* and probability of failure *q* = 1 – *p* is the following equation: $C(n, k) p^{k} q^{n-k}.$

Background on Bernoulli

The law of large numbers:

If ϵ > 0, as *n* becomes arbitrarily large the probability approaches 1 that the fraction of times an event *E* occurs during n trials is within ϵ of *p*(*E*).

JACOBI BERNOULLI,
Profeif. Bafil. & utriuique Societ. Reg. Scientiar.
Gall. & Pruff. Sodal. MATHEMATICI CELEBERRIMI, ARS CONJECTANDI, OPUS POSTHUMUM. Accedit TRACTATUS DE SERIEBUS INFINITIS, Et EPISTOLA Gallice fcripta DE LUDO PILE RETICULARIS. BASILEE, Impenfis THURNISIORUM, Fratrum. clo locc xIII.

Random Variables

• The *distribution* of a random variable *X* on a sample space *S* is the set of pairs $(r, p(X = r))$ for all *r* \in *X*(*S*), where *p*(*X* = *r*) is the probability that *X* takes the value *r*.

Bayes' Theorem

• Suppose that *E* and *F* are events from a sample space *S* such that $p(E) \neq 0$ and $p(F) \neq 0$. Then we have, $p(F | E) =$ $p(E | F) p(F)$ $\overline{p(E|F)p(F)+p(E|\overline{F})p(\overline{F})}$

The Enumeration Algorithm - Ask Function

function ENUMERATION-ASK (X, e, bn) returns a distribution over X **inputs:** X , the query variable e, observed values for some set of variables E bn, a Bayes net $Q \leftarrow$ a distribution over X, where $Q(x_i)$ is $P(X=x_i)$ for each value x_i that X can have do $\mathbf{Q}(x_i) \leftarrow$ ENUMERATE-ALL(*bn*.vars, \mathbf{e}_x), where \mathbf{e}_x is the evidence **e** plus the assignment $X=x_i$ **return** NORMALIZE (Q)

The Enumeration Algorithm $-$ All Function

function ENUMERATE-ALL(*vars*, e) returns a probability (a real number in [0,1]) inputs: $vars$, a list of all the variables e, observed values for some set of variables E if $Emry(vars)$ then return 1.0 $Y \leftarrow$ FIRST(*vars*) if Y is assigned a value (call it y) in **e then return** $P(Y=y |$ values assigned to Y's parents in e) \times ENUMERATE-ALL(REST(vars), e) else **return** $\sum_{v_i} [P(Y=y_i \mid \text{values assigned to } Y \text{ is parents in } e) \times \text{EnumERATE-ALL}(\text{REST}(vars), e_{v_i})],$ where e_{v_i} is the evidence e plus the assignment $Y=y_i$

The Variable-Elimination Algorithm

function ELIMINATION-Ask(X, e, bn) returns a distribution over X **inputs**: X , the query variable

e, observed values for some set of variables E

bn, a Bayes net

factors \leftarrow [for each variable v in bn.vars, the CPT for v given e] for each var in bn.vars if var is not in e and var is not X do *relevant-factors* \leftarrow [all factors that contain *var*]

factors.remove(relevant-factors)

factors.append(SUM-OUT(var, POINTWISE-PRODUCT(relevant-factors))) **return** NORMALIZE(POINTWISE-PRODUCT(factors))

Sources

Discrete Mathematics and Its Applications, 8th Edition By Kenneth H. Rosen

Exact Inference in Bayes Nets – Pseudocode from MIT's Artificial Intelligence course (6.034)

Bayesian Network – www.wikipedia.com