Probability Theory and Exact Inference in Bayesian Networks

 $d^{\circ} = 1 [a 0]$

By: Aryeh Freud

Arcsin(2)

KnH =

Finite Probability

•1 L

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, that is, a subset of S, then the probability of E is $p(E) = \frac{|E|}{|S|}$

According to Pierre-Simon Laplace's definition, the probability of an event happening is between 0 and 1.

Pierre-Simon Laplace

Assigning Probabilities

- Suppose that S is a set with n elements. The uniform distribution assigns the probability 1/n to each element of S.
- The probability of an event as the sum of the probabilities of the event is

 $p(E) = \sum_{s \in E} p(s)$

• Because |E| = m and |S| = n, it follows that $p(E) = \frac{m}{n} = \frac{|E|}{|S|}$ which is Laplace's definition of the probability of event E.

Probabilities of Complements and Unions of Events

- Let *E* be an event in a sample space *S*. The probability of the event is $\overline{E} = S E$.
- The complementary event of *E*, is given by $p(\overline{E}) = 1 p(E)$, where \overline{E} is the complementary event of the event E. This holds true when looking at the equation $\sum_{s \in S} p(s) = 1 = p(E) + p(\overline{E})$ because the sum of probabilities of the n possible outcomes is 1 and each outcome is either in E or in \overline{E} but not in both.
- The generalization of this is in the following formula for the probability of the union of pairwise disjoint events: $p(\bigcup_i E_i) = \sum_i p(E_i).$

Conditional Probability

[kən-'dish-nəl ,prä-bə-'bi-lə-tē]

The likelihood of an event or outcome occurring, based on the occurrence of a previous event or outcome. • Let *E* and *F* be events with p(F) >0. The conditional probability of E given F, denoted by p(E | F) is defined as: $p(E | F) = \frac{p(E \cap F)}{p(F)}$

Independence

• Let E and F be events. E and F are independent if and only if $p(E \cap F) = p(E)p(F)$.

• We know that $p(E | F) = \frac{p(E \cap F)}{p(F)}$, so asking if p(E | F) = p(E) is the same as $p(E \cap F) = p(E)p(F)$, which is what led us to our definition of independence.

Bernoulli Trials

• The probability of exactly k successes in n independent Bernoulli trials, with probability of success p and probability of failure q = 1 - pis the following equation: $C(n,k)p^kq^{n-k}$.

Background on Bernoulli

The law of large numbers:

If $\epsilon > 0$, as *n* becomes arbitrarily large the probability approaches 1 that the fraction of times an event *E* occurs during *n* trials is within ϵ of *p*(*E*).

JACOBI BERNOULLI, Profeff. Bafil. & utriufque Societ. Reg. Scientiar. Gall. & Pruff. Sodal. MATHEMATICI CELEBERRIMI, ARS CONJECTANDI, OPUS POSTHUMUM. Accedit TRACTATUS DE SERIEBUS INFINITIS, Et Epistol A Gallice scripta DE LUDO PILÆ RETICULARIS. BASILEÆ, Impenfis THURNISIORUM, Fratrum. clo locc xIII.

Random Variables

• The distribution of a random variable X on a sample space S is the set of pairs (r, p(X = r)) for all $r \in X(S)$, where p(X = r) is the probability that X takes the value r.

Bayes' Theorem

• Suppose that *E* and *F* are events from a sample space *S* such that $p(E) \neq 0$ and $p(F) \neq 0$. Then we have, $p(F \mid E) = p(E \mid F)p(F)$ $\overline{p(E \mid F)p(F) + p(E \mid \overline{F})p(\overline{F})}$

The Enumeration Algorithm -Ask Function

function ENUMERATION-ASK(X, e, bn) returns a distribution over X inputs: X, the query variable e, observed values for some set of variables E bn, a Bayes net $\mathbf{Q} \leftarrow a$ distribution over X, where $\mathbf{Q}(x_i)$ is $P(X=x_i)$ for each value x_i that X can have do $\mathbf{Q}(x_i) \leftarrow ENUMERATE-ALL(bn.VARS, \mathbf{e}_{x_i})$, where \mathbf{e}_{x_i} is the evidence e plus the assignment $X=x_i$ return NORMALIZE(Q) The Enumeration Algorithm – All Function function ENUMERATE-ALL(vars, e) returns a probability (a real number in [0,1]) inputs: vars, a list of all the variables e, observed values for some set of variables E if EMPTY(vars) then return 1.0 $Y \leftarrow \text{First}(vars)$ if Y is assigned a value (call it y) in e then return P(Y=y | values assigned to Y's parents in e) × ENUMERATE-ALL(REST(vars), e) else return $\sum_{y_i} [P(Y=y_i | values assigned to Y's parents in e) × ENUMERATE-ALL(REST(vars), e)_{y_i}],$ where e is the evidence e plus the assignment $Y=y_i$

The Variable-Elimination Algorithm

function ELIMINATION-Ask(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for some set of variables E

bn, a Bayes net

factors \leftarrow [for each variable v in bn.vars, the CPT for v given e] for each var in bn.vars if var is not in e and var is not X do relevant-factors \leftarrow [all factors that contain var]

factors.remove(relevant-factors)

factors.append(Sum-Out(var, POINTWISE-PRODUCT(relevant-factors)))
return Normalize(POINTWISE-PRODUCT(factors))

Sources

Discrete Mathematics and Its Applications, 8th Edition By Kenneth H. Rosen

Exact Inference in Bayes Nets – Pseudocode from MIT's Artificial Intelligence course (6.034)

Bayesian Network – www.wikipedia.com